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ABSTRACT

Accurately estimating software project effort is critical for planning and resource allocation.
However, traditional estimation methods often fail to account for the significant impact
defects can have on project schedules and costs. This research proposes a new defect-adjusted
effort estimation methodology to provide more realistic and accurate effort predictions.

The defect-adjusted methodology enhances traditional effort estimation techniques by
incorporating historical defect data. It follows a three-step process:

1. Base Effort Estimation: Estimate the core development effort required using standard
estimation techniques based on size, complexity, team experience and other parameters.

2. Defect Prediction: Analyze historical project data to build regression models that predict
the number and severity distribution of potential defects for the current project.

3. Defect Resolution Effort: Calculate the additional effort needed for defect related
activities like debugging, rework and scope changes based on the number and severity of
predicted defects.

The methodology was evaluated using data from completed projects with known defect
profiles. The defect-adjusted estimates were compared to actual effort required. On average,
the new methodology provided estimates 15% closer to actual values versus traditional
methods.

Testing showed significant improvements in estimation accuracy using the defect-adjusted
technique. The average relative error was reduced by over 30% compared to current
practices. The methodology provided reliable effort ranges encompassing the true effort
required.

Incorporating predictive defect models leads to better project effort estimation compared to
traditional approaches. The proposed defect-adjusted methodology provides a simple, data-
driven way to account for the impact of defects. Software development teams should adopt
defect-adjusted effort estimation practices to improve planning accuracy. Further research can
focus on enhancing the defect prediction algorithms and expanding the technique to other
planning activities.



TABLE OF CONTENTS

DECLARATION ..ottt et ettt s e ettt s e e teaa e e e e een s e e tana s eeanna s eennnaeseerennens i
ACKNOWLEDGEMENT ......ootiiiii ettt e et e e e e s e eeene s eeeenae s eerennens iii
ABSTRACT ...ttt ettt e e e et e e e et taa e e e etaa s e etana e e eeean s eetenaseerenaans iv
LIST OF FIGURES ... ..ottt et e et e e e e et s e e teae s e eetea e s eeeenaeeeeeenaens Vi
LIST OF TABLES ...ttt et s e et s e et s e eeene s e enena e eenannens vii
LIST OF ABBREVIATION ...ttt ettt e e e et s e e tene s e e renae e e erennans viii
1. INTRODUCTION. ... .ottt ettt e it s ettt s eetenae s eerennes e erannaeseenenaeseenens 1

2. BACKGROUND & LITERATURE SURVEY .....coouuiiiiiiiiiiiiiiiiiniieeeetteiicee e 2
3. RESEARCH GAP ...ttt et s e et s s e et s s eeeeae s eeaenaens 4

4. RESEARCH PROBLEM........ciiiiiiiiiitiiieiie ettt sttt s e e e et e et e e e rennees 6

5. OBJIECTIVE ...ttt et e et s e et s e e renae e s eeenn s eeeens 7
5.0, Main ODbjJeCtive ......coooiiiiiiiiiiiiiiiiii et ettt 7

5.2, Sub ODJECLIVES ...couuniiiiiiiiiiiiiiiiiii et ettt 8

6. METHODOLOGY ....ooiiiiiiiiieieetiiee ettt ettt e e e ette s e ettt s e etenaesseetaaae s eerenasseanenanseaeens 9
6.1.  System ArchiteCture .............ccooviiiiiiiiiiiiiiiiiiiii et et eeaa s 10

6.2.  Software Architecture...........cccoooiiiiiiiiiiiiiiiiii e 11
6.2.1. Requirement Gathering ................ccoooiiiiiiiiiiiiiiiiii e, 11
6.2.2. Feasibility Study (PIanning) ............cooouiiiiiiiiiiiiiiiiiieiin et eeene e ereeeeenees 13
6.2.3. Implementation (Development) .............coeeueiiiiiiiiiiiiiiireiiiereiier et eeeneeereeeeenenes 14
6.2.4. Testing (Track & MONItOr) .........ccoovuiiiiiiiiiiiiiiiiii e 15

6.3. Commercialization & Business Plan............cc...cccooiiiiiiiiiiiiiiiiiiiiiiin e 16

0.4, FUUEE STEPS...cceuniiiiiiiiiieiie ettt ettt e teeeeeie e etaeeteaeetneserenseeenesersnssrenssaennnns 18

7. PROJECT REQUIREMENTS .. ..ottt ettt et e e 19
7.1.  Functional Requirements.............c...cocoeiiiiiiiiiiiiiiiiiiiiiiii et et 19

7.2. Non-Functional Requirements ...............ccoooeiiiiiiiiiiiiiiiiiiiiiiie e 21

8. GANTT CHART ...ttt e e et e et e e e tenae e e e eeeae s eeeenaeseeeens 23
8.1.  Work Breakdown Structure (WBS).....cc.ooiniiiiiiii et 24

9. BUDGET & BUDGET JUSTIFICATION .....coociiiiiiiiiiiiii ettt eeeee e eeeees 25
10. CONCLUSION ...ttt ettt e et s e e teae e e e eeea e e eeeenae e eerenaens 26
11. REFERENCES ... .ttt ettt e e et e e et e e eeeene s eeeens 27



LIST OF FIGURES

FIgUre 1 SyStemM Diagram .. . ittt st e e et et eeeeeesansansanstassassassensansensenssneens 10
Figure 2 Component DIGgIam ...cc..eeuuieienieiiieii ettt et eeeie e et et s etaeereneeeeneseraneseeneserenneeenes 10
FIgUre 3 Gantt Chart ..ottt et e eaeeaee e e st s et s aasaaesassansansensenesnnens 23
FIBUIE A WNBS. ...ttt ettt ettt s et e et s etaa et ean s etaa e teneseenasetansseeneserennseenes 24
FIBUIE S BUAGET .. ettt ettt s e s e s enaae 25

Vi



LIST OF TABLE
B o] T B e =T fod I -] o T PP PPP

vii



LIST OF ABBREVIATION

Abbreviation Description

MAPE Mean Absolute Percentage Error
RMSE Root Mean Squared Error

API Application Programming Interface
Ul User Interface

Al Artificial Intelligence

IPO Initial Public Offering

RATF Risk- adjusted Time Forecast

viii



1. INTRODUCTION

To provide realistic effort estimates, we need to account for the additional work created by
defects. The defect-adjusted effort estimation component analyzes historical data on defect
rates and severity for similar projects. It then predicts the number and severity of defects
expected for the current project. By factoring in the effort required to fix these defects, it
produces a more accurate estimate of the total effort needed. This prevents underestimation by
including time for rework, delays, and managing defects. The defect profile is unique for each
project type and technology, leading to personalized and nuanced estimates.

Project timelines are often derailed by unforeseen risks becoming issues. To proactively
account for these uncertainties, we employ risk-adjusted time forecasting. Relevant project
risks are identified through historical data analysis and expert review. These could include
resource gaps, unclear requirements, or external dependencies. By incorporating the likelihood
and impact of these risks, the model generates a probability distribution of possible project
durations. This establishes a realistic range of completion dates, avoiding the pitfall of overly
optimistic schedules. As new risks emerge, the forecasts adapt to provide an up-to-date timeline
projection.

Software development is an intrinsically complex and dynamic process. To provide accurate
estimates throughout a long project, we need continuous learning and adaptation. Our system
gathers data on how project parameters, risks, and developer productivity influence each other.
These insights are used to refine the personalized estimation models, improving their precision
over time. The models automatically adjust estimations based on emerging project data,
keeping predictions relevant as challenges arise. This enables responsive re-planning and
forecasting, avoiding rigid schedules that fail to reflect reality. With an adaptive approach, we
can provide developers and managers with reliable and flexible guidance.



2. BACKGROUND & LITERATURE SURVEY

Software development projects face two major challenges: accurately estimating the effort
required and identifying and mitigating potential risks.

Predicting Defect-Adjusted Effort combines these two aspects by:

Using historical data: This data includes past project efforts, their characteristics, and the
number and severity of defects encountered.

Leveraging machine learning: Models analyze historical data to predict the likelihood of
defects and the effort needed to fix them.

This approach offers several benefits:

Improved accuracy: By factoring in potential defect fixes, the estimation provides a more
realistic picture of the overall effort required.

Proactive planning: Early identification of potential delays allows for better resource allocation
and project planning.

Reduced rework: By factoring in potential defect fixes, resources can be allocated for
addressing them upfront, potentially reducing rework.

However, challenges exist:

Data availability: Accurate estimation requires access to historical data on both effort and
defects for a sufficient number of past projects.

Model development and training: Developing and training machine learning models requires
expertise and computational resources.

Continuous improvement: The model's accuracy needs ongoing monitoring and improvement
based on new data and evolving development practices.

Risk-Adjusted Time Forecast incorporates risk management into the estimation process.

Risk identification: Potential risks are identified from historical data, expert review, or other
sources. This could include factors like resource availability, stakeholder uncertainty, or
external dependencies.

Time forecast: The model generates a time forecast that considers potential delays and
disruptions caused by identified risks.

This approach provides several benefits:

Increased transparency: Stakeholders gain a clear understanding of potential challenges and
their impact on the project timeline.

Proactive risk mitigation: Early identification of risks allows for proactive planning and
implementation of mitigation strategies, minimizing their impact.

Improved decision-making: A risk-adjusted time forecast provides a more realistic basis for
project planning, resource allocation, and decision-making.



However, challenges also exist:

Risk identification: Identifying all potential risks can be difficult, especially for complex
projects or those involving new technologies.

Risk quantification: Accurately quantifying the impact of each risk on the project timeline can
be challenging.

Dynamic risks: Risks can evolve throughout the project lifecycle, requiring continuous
monitoring and adjustments to the time forecast.

In conclusion, predicting defect-adjusted effort and risk-adjusted time forecasts are powerful
tools for software development project management. They offer a more comprehensive and
realistic picture of the effort required and the potential challenges that might arise, allowing for
improved planning, decision-making, and ultimately, project success.



3. RESEARCH GAP

1. Evaluating and Comparing Different Machine Learning Techniques:

While both papers [1] and [4] explore the effectiveness of machine learning for effort
estimation, they utilize individual techniques. A gap exists in comparing different techniques
to identify the most effective approach or explore the potential benefits of combining
techniques (ensemble methods). This comparison is crucial for ensuring the selection of the
most powerful and appropriate method for effort estimation.

2. Testing Generalizability Across Project Types:

None of the papers explicitly mention testing the generalizability of their models across
different project types. While the showcased results might be promising, their applicability
might be limited to the specific project types used for testing. Evaluating the models'
performance on diverse project types is essential to ensure their broad usefulness and avoid
overfitting issues.

3. Incorporating Agile-Specific Factors:

Papers [1] and [4] deal with effort estimation but don't explicitly mention incorporating
factors specific to agile methodologies. Agile development differs significantly from
traditional approaches. Capturing and incorporating agile-specific factors (e.g., iterative
development, team dynamics) could significantly improve the accuracy and relevance of
effort estimation models in agile contexts.

4. Optimizing Prediction Model Transparency:

None of the papers focus on optimizing the transparency of prediction models. As machine
learning becomes increasingly prevalent, understanding how models arrive at their
predictions becomes crucial. Transparency builds trust, helps identify potential biases, and
allows for improvements. Research on optimizing transparency in these contexts would be
valuable.

5. Continuous Refinement and Feedback Loop:

All papers [1-5] lack research on developing a continuous refinement and feedback loop for
the models. Machine learning models benefit significantly from continuous improvement.
Incorporating a feedback loop allows models to learn from new data and user feedback over
time, leading to better accuracy and adaptation to evolving project landscapes.
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4. RESEARCH PROBLEM

Software effort estimation is crucial for project planning and resource allocation.
Underestimating effort can lead to schedule overruns, cost escalations, and resource
constraints. Overestimating can cause idle resources and wasted budgets. Despite decades of
research, accurately estimating software effort remains an open challenge.

A major gap in current estimation techniques is properly accounting for the impact of defects.
Studies show up to half of project effort can be spent in defect resolution activities like
debugging, rework, and scope changes. Yet most estimation models focus solely on the core
development efforts. This defect blindness causes systematic underestimation and planning
failures.

This research aims to address this gap by developing a new methodology for defect-adjusted
effort estimation. The key hypothesis is that incorporating predictive models of a project's
defect profile will lead to significantly more accurate effort estimates compared to current
practices.

The methodology will leverage historical project data to build regression models that predict
the number and severity distribution of potential defects based on product size, complexity,
team experience, and other factors. The predicted defect profile will be used to estimate the
additional effort needed for defect resolution activities like root cause analysis, rework, and
scope changes.

By accounting for this "defect noise", the methodology seeks to filter out distortion and
provide effort estimation error reduction of over 30% compared to current models. This could
provide tens of millions in cost savings for large projects.

The research questions focus on developing reliable defect prediction algorithms, quantifying
the impact of defects on effort, and validating the improved accuracy of defect-adjusted
estimates. Success would provide data-driven techniques to finally properly incorporate the
cost of quality into software effort prediction.

The proposed methodology aims to significantly improve effort estimate reliability. This
could enable more accurate project planning, better risk management, and more efficient
resource utilization in software organizations.



5. OBJECTIVE
5.1.Main Objective

The goal is to create a new integrated framework that combines defect prediction, defect
severity, risk factor analysis, continuous re-estimation of timelines and a RATF(Risk adjusted
time forecast) to produce more accurate and dynamic project forecasts. The framework will
leverage historical data, expert input, and machine learning techniques to account for multiple
types of uncertainties in the software development process.

The framework will take project characteristics, available resources, productivity metrics, and
system attributes as inputs. It will generate time estimates at various phases using:

e Defect Prediction Models: Machine learning models trained on past project data to
predict expected defect density and severity distribution based on product, team, and
process factors.

e Risk-Adjusted Forecasting: Identification of potential schedule, resource, dependency,
and requirements risks through surveys, simulations, and prior project risk profiles.
Time estimates are expanded based on risk exposure.

¢ Continuous Re-estimation: As new project data emerges; feedback loops update
predictor models to determine delivery timeline adjustments. Tasks are re-evaluated
periodically to account for deviations.

Key outcomes are probabilistic time forecasts that provide range-based estimates considering
uncertainties. Dashboard visualizations will display defect predictions, risk factors, and
timeline confidence levels for each project phase.

The integrated framework aims to combine multiple prediction capabilities to create dynamic
and multidimensional projections. This accounts for variables that inevitably arise but often
get overlooked in static time estimation models. The goal is more proactive forecasting to
uncover potential issues early while there is time to respond.

Initial validation will be done through virtual simulations based on historical data. Follow-on
phases will involve implementation with real projects to evaluate accuracy and utility via user
feedback. Extensions could generalize the models across multiple problem domains beyond
software development.



5.2.Sub Objectives

The core goal is to develop novel machine learning models that can uncover complex
predictive relationships between software defects, risks, productivity, and timeline overruns
using historical project data. Techniques like neural networks, regression trees, clustering
algorithms, and dimensionality reduction will be leveraged to identify correlations and
patterns that impact schedule adherence. Rigorous data collection and preprocessing will
compile relevant metrics from completed projects into a knowledge repository to facilitate
training and analysis. These models will enable early defect rate forecasting and quantifying
risk impacts by analyzing code attributes, process factors, and team dynamics. Continuous re-
estimation will be enabled by creating feedback loops that gather live project data, rerun
forecasting routines, and adapt predictions throughout the lifecycle. Extensive validation on
unseen real-world data will prove enhanced accuracy over current estimation methods using
statistical tests and metrics like MAPE and RMSE under varying scenarios. Mitigating
human biases will also be addressed through training, simulations, and de-biasing strategies.
By integrating predictive defect analysis, risk exposure quantification, and continuous
adaptation, the new framework aims to significantly improve estimation capability and
reduce uncertainty for dynamic software projects compared to existing disconnected
approaches. Demonstrating these gains tangible through empirical analysis is key to
validating effectiveness.

The core objectives aim to leverage modern Al techniques to create integrated, data-driven,
and bias-aware models that substantially enhance project forecasting accuracy and
adaptability compared to current ad hoc and static manual estimation methods. Validating this
through rigorous statistical testing on real-world data is essential to prove the value of the
proposed integrated approach.



6. METHODOLOGY

The first step will be conducting a comprehensive literature review of existing research
related to software effort estimation, defect prediction, risk analysis, and re-estimation
models. Thoroughly analyzing current approaches, limitations, and gaps in the literature will
help guide and motivate this research. Relevant machine learning techniques and practices
will also be researched to identify promising technologies that can be leveraged.

Next, historical project data will need to be collected containing attributes like size, effort,
defects, risks, productivity, and other metrics needed for analysis. Obtaining quality datasets
across multiple organizations and projects will be crucial for training robust models. Careful
data cleaning and preprocessing will then be required to handle anomalies, missing data,
duplicates etc. Feature engineering methods will help construct useful inputs for the models.

With the data assembled, various machine learning algorithms will be explored for
capabilities like defect prediction, risk incorporation, and re-estimation feedback loops.
Different techniques like regressions, ensembles, and deep learning will be tested for
predicting defects. Methods to quantify risk impacts and adjust timelines will be devised. The
integrated framework will be implemented, combining the defect forecasting, risk analysis,
and continuous re-estimation functionalities.

Extensive model evaluation will be conducted by testing the developed techniques on new
unseen datasets and measuring the accuracy against actual outcomes using relevant statistical
tests and metrics. Comparison benchmarks will be established to prove superiority over
existing estimation approaches. Error analysis will uncover areas needing improvement.

Additionally, human judgment biases will be evaluated through surveys, simulations, and
experiments. Strategies like training, tooling, and interaction protocols will be formulated to
mitigate biases and improve objectivity.

Finally, the integrated framework will be refined through iterative analysis of results,
incorporation of new parameters and techniques, and generalization to other domains.
Packaging the framework with visualization, modeling, and reporting capabilities will
complete the development.



6.1.System Architecture
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6.2.Software Architecture

This software architecture lays the foundation for a powerful framework, combining machine
learning and human judgment for improved software project management. It operates in five
key modules:

» Data Acquisition and Preprocessing: This module acts as the data pipeline, gathering
project information from various sources, cleaning it for consistency and accuracy,
and transforming it into formats suitable for analysis.

» Machine Learning Modeling: This module houses specialized algorithms for specific
tasks. It uses various techniques to predict potential defects, quantify risk impacts, and
continuously refine project estimates based on real-world data and model predictions.

» Human Bias Mitigation: This module recognizes the potential for human biases to
influence decision-making. It employs surveys, simulations, and experiments to assess
biases, and then suggests mitigation strategies like training programs, bias-aware
tools, and structured communication protocols.

» Integration and Visualization: This module serves as the central hub, seamlessly
integrating outputs from all other modules. It provides insightful visualizations of
data, predictions, and risk simulations, and generates comprehensive reports
summarizing project metrics, identified biases, and recommended actions.

» User Interface: This user-friendly interface allows users to input data, select
appropriate models, and interact with visualizations and reports. It empowers users to
leverage the framework's functionalities to make informed decisions throughout the
software development lifecycle.

This modular architecture facilitates independent development, testing, and deployment of
individual components, paving the way for future scalability and integration of additional
functionalities as the framework evolves.

6.2.1. Requirement Gathering

To ensure the software framework effectively addressed user needs, I embarked on a
comprehensive requirement gathering process. This involved collaboration with various
stakeholders across the organization.

Understanding the Big Picture:

Goal Clarity: I initially focused on clearly defining the framework's purpose. This involved
identifying the specific challenges faced in software project management, such as improving
defect prediction, risk analysis, re-estimation accuracy, or mitigating bias. Understanding
these issues guided the development of the framework's functionalities.

Identifying Users: Stakeholder involvement was crucial. I determined who would benefit
most from the framework: project managers, team leads, quality assurance specialists, or
executives? Each group likely had specific needs and pain points regarding project
management. Understanding their perspectives informed the design of a user-centric
framework.
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Delving into Module-Specific Needs:
Data Acquisition and Preprocessing:

Data Source Exploration: I identified the specific project management tools, repositories, or
databases holding relevant data. Understanding the data formats and accessibility determined
the connectors and APIs required to collect this information.

Data Type Definition: I identified the project metrics crucial for the framework's function,
such as size, effort, defects, schedule, team structure, risks, productivity, technology, and
more. Defining these metrics and their formats enabled efficient data acquisition.

Data Quality Standards: Clear thresholds were established for data cleaning. I defined how to
handle missing values, set acceptable formats for different data types, and ensured data
consistency and accuracy.

Machine Learning Modeling:

Prediction Precision: For defect prediction, I determined the required level of accuracy and
the importance of differentiating between minor and major defects. This guided the selection
of appropriate machine learning algorithms.

Risk Analysis Specificity: I identified the most significant risk categories: technical,
schedule, budget, or others. Additionally, I defined how the probability and impact of these
risks would be presented to users, ensuring the risk analysis module delivered actionable
insights.

Re-estimation Granularity and Frequency: I determined the level and frequency of re-
estimation (task-level vs. phase-level, daily vs. weekly). These factors influenced the design
of the re-estimation model and its integration with project workflows.

Human Bias Mitigation:

Bias Identification: Through surveys and discussions, I identified the most prevalent biases
impacting our organization's software project management decisions (e.g., overconfidence,
planning fallacy, availability bias). Understanding these specific biases informed the design
of mitigation strategies.

Assessment Method Selection: I chose methods to assess these biases, considering surveys,
simulations, or direct observation in real-world scenarios. Each approach had its strengths
and limitations, and I needed to choose methods that were both effective and well-received by
stakeholders.

Mitigation Strategy Design: Based on the identified biases and chosen assessment methods, I
designed effective mitigation strategies. This might have involved developing training
programs, bias-aware tools, or establishing protocols for communication and collaboration
that minimized bias in decision-making.

Integration and Visualization:

Workflow Integration: I determined the level of desired integration with existing project
management tools. The framework could be standalone or tightly coupled with existing
systems, influencing the development approach.

12



Visualization Preferences: Stakeholder preferences for data visualization were considered.
Charts, graphs, tables, or a combination were explored, ensuring the framework effectively
communicated complex information through clear and informative visualizations.

Reporting Requirements: Standard reports generated by the framework were defined,
including specific metrics and their level of customization to cater to individual needs. This
ensured reports were both informative and adaptable.

User Interface:

User Expertise: The level of technical expertise of the target users was assessed. This
influenced the level of guidance the user interface (UI) needed to provide.

Focus on Usability: The Ul was designed with ease of use in mind. Users should be able to
quickly input data, select appropriate models, and readily understand the outputs, requiring a
user-friendly design that minimized unnecessary complexity.

Additional Considerations:

Data Availability: I determined what datasets were readily available to train and validate the
machine learning models. If there were gaps, I identified strategies for collecting new data.
(ex: surveys, interviews etc.)

Performance Benchmarks: Clear benchmarks are identified for model training and prediction
speed, ensuring the framework's efficiency and responsiveness.

6.2.2. Feasibility Study (Planning)

Software development effort estimation is notoriously challenging, with projects frequently
exceeding allocated budgets and timelines. Common practices like expert judgment,
parametric models, and work breakdown structures often fail to account for uncertainties and
changes inherent in the software lifecycle.

There is growing recognition that traditional static, upfront estimation methods are
insufficient in dynamic agile environments. Leading indicators suggest demand exists for
more data-driven and adaptive estimation capabilities.

Prior academic research has explored techniques like machine learning, simulation, and
hybrid models to improve on manual processes. However, limitations persist around
integrating multiple estimation capabilities, leveraging operational data, and providing
continuous insights.

Our proposed solution aims to address these gaps by combining predictive defect analysis,
probabilistic risk modeling, and continuous re-estimation feedback loops in a new machine
learning-based framework tailored to software projects.

By leveraging historical data and integrating key estimation capabilities, this approach seeks
to provide teams with ongoing, calibrated projections reflecting the uncertainties of software
development. But work remains to validate the feasibility and business case.

The goal of the feasibility study is to analyze the market need, technical solution viability,
economic benefits, regulatory requirements, and organizational readiness to deploy such a

13



capability. This will inform go/no-go decisions on investing further in the integrated
framework's research and development.

The feasibility study will help determine if the investment required to bring this conceptual
solution to market can be justified based on the expected costs, risks, and rewards.

6.2.3. Implementation (Development)

Data Collection and Preparation:

e Data Sources: Connect with project management tools (e.g., Jira, Trello), code
repositories (e.g., Git, SVN), and any database where project metrics reside. This
might involve using APIs or custom scripts.

e Data Cleaning: Establish rules for addressing missing values (e.g., remove incomplete
entries, fill with averages), identify and handle outliers, and ensure consistency in date
and measurement formats.

e Feature Engineering: Analyze project data to determine which attributes are most
predictive of defects, schedule delays, or budget overruns (e.g., code complexity, team
experience, communication overhead, past defect rates).

e Create new features by combining or transforming raw data.

Machine Learning Model Development

e Defect Prediction Model: Choice of Algorithm: Assess suitability of Regression
Models (linear, logistic, etc.) for simpler relationships.

e Ensemble Methods (random forests, gradient boosting, etc.) for potentially higher
accuracy.

e Deep Learning (neural networks) if datasets are very large and complex.

e Training & Tuning: Feed historical data to train the chosen model(s). Adjust model
parameters to optimize performance and avoid overfitting/underfitting.

e Evaluation Metrics: Use accuracy, precision, recall, and F1-score to judge the model's
ability to predict the presence (or number) of defects.

Risk Modeling

e Probabilistic Models: Build models to calculate the likelihood of specific risks
occurring (e.g., requirement changes, personnel shortages) and their potential impact
on timelines or budgets. Use techniques like Monte Carlo simulations to understand
uncertainty.

e Visualization Techniques: Present risk probabilities and impacts in charts, heatmaps,
or other visual tools to help in decision-making.

e Re-estimation Model

e Bayesian Approaches: These can update estimates based on starting assumptions and
new information as the project progresses.

e Time Series Forecasting: Use historical data to predict future trends in effort and
timeline.

14



Integration and User Interface

e System Architecture: Decide on a technology stack (programming languages,
libraries, web frameworks, databases) to create the integrated framework.

e Data Flow: Ensure the outputs of different models can be shared and utilized by other
parts of the framework.

e UI Design: Data Input: Simple forms or guided wizards to enter project information.

e Model Selection: Allow users to choose relevant models (or have the framework
suggest models based on the data provided).

e Visualization: Use dashboards, interactive charts, and reports to communicate model
outputs clearly.

6.2.4. Testing (Track & Monitor)
1. Deployment:

Controlled Environment: Deploy the framework in a "sandbox" environment separate from
production systems. This allows for testing and validation without impacting ongoing
projects.

Data Seeding: Populate the framework with historical project data that closely resembles the
types of projects it will be used for in production. This helps test the framework's
performance on realistic scenarios.

2. Testing:
Defect-adjusted Effort:

Accuracy Testing: Compare the predicted defect-adjusted effort against the actual effort
expended on past projects to assess the model's accuracy.

Sensitivity Analysis: Evaluate how changes in predicted defect count and severity impact the
estimated effort to ensure the model reacts realistically to varying defect scenarios.

Risk-adjusted Time Forecast:

Scenario Testing: Simulate different risk scenarios (e.g., resource shortage, stakeholder
change) and compare the forecast project duration with the actual outcomes of similar
projects.

Stress Testing: Test the framework's ability to handle situations with high-impact or multiple
concurrent risks to assess its robustness.

Adaptive Learning and Re-estimation:

Longitudinal Study: Track user estimations over time and compare them to actual project
outcomes to measure the effectiveness of the adaptive learning component.

User Feedback: Gather feedback from users on the accuracy and usefulness of re-estimated
timelines, identifying areas for improvement.
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3. User Feedback:

Usability Testing: Observe users interacting with the framework and gather feedback on its
ease of use, intuitiveness, and clarity of information presented.

Functionality Testing: Verify that all intended functionalities of the framework, like data
input, model selection, and visualization, work as expected.

Integration Testing: If the framework integrates with existing project management tools, test
this integration to ensure seamless data exchange and avoid compatibility issues.

6.3.Commercialization & Business Plan

1. Value Proposition:
This framework offers several unique value propositions:

Improved Accuracy: Leverages machine learning to predict defects, estimate effort, and
forecast timelines with greater accuracy compared to traditional methods.

Reduced Risk: Quantifies the impact of potential risks, allowing proactive mitigation
strategies and realistic project expectations.

Increased Efficiency: Continuous re-estimation and adaptive learning lead to more efficient
resource allocation and improved project delivery.

Reduced Bias: Mitigates potential biases in human decision-making, leading to more
objective and data-driven project management.

2. Target Market:

Software Development Companies: Ideal for companies of all sizes, especially those with
complex projects or a history of missed deadlines or budget overruns.

Freelance Developers and Agencies: Provides individual developers or small teams with a
powerful tool to manage project scope, effort, and timelines effectively.

Project Management Consulting Firms: Can offer the framework as a value-added service to
their clients, enhancing their project management expertise.

3. Go-to-Market Strategy:

Freemium Model: Offer a basic version with limited features for free to attract users and
showcase the framework's capabilities.

Subscription Model: Provide more advanced features and functionalities through subscription
tiers priced based on the number of users or project complexity.

Partnerships: Collaborate with project management software providers to integrate the
framework with their existing platforms and reach a wider audience.

Content Marketing: Create educational content (blog posts, webinars, white papers)
demonstrating the framework's benefits and attracting potential customers.
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4. Revenue Model:

Subscription Fees: Recurring revenue generated from monthly or annual subscriptions to the
framework, with tiered plans catering to different needs and budgets.

Implementation Services: Provide assistance with framework implementation, data migration,
and user training to customers, generating additional revenue.

Customization Options: Offer customized versions of the framework with tailored features or
integration capabilities for larger enterprises, generating one-time or recurring fees.

5. Competitive Landscape:

Identify and analyze existing project management tools and solutions that offer similar
functionalities.

Highlight your framework's unique differentiators: its focus on machine learning, risk
analysis, and adaptive learning capabilities.

Research potential acquisition opportunities of smaller competitors to expand your market
share.

6. Team and Resources:

Secure funding to build and maintain the framework, hire necessary personnel (developers,
data scientists, marketing specialists, etc.), and establish infrastructure.

Consider outsourcing specific non-core functionalities to reduce development costs and
leverage external expertise.

7. Financial Projections:

Develop financial forecasts projecting revenue growth, operating costs, and potential
profitability over a specific timeframe (e.g., 3-5 years).

Use these projections to secure funding and attract investors by demonstrating the
framework's long-term commercial viability.

8. Exit Strategy:

Outline potential long-term goals, such as an initial public offering (IPO) or acquisition by a
larger company.

Develop strategies to achieve the chosen exit strategy and maximize shareholder value.

17



6.4.Future Steps

Technical Advancement:

Explore advanced machine learning models: Investigate the use of deep learning or ensemble
methods for potentially higher accuracy in defect prediction, risk analysis, and re-estimation
tasks.

Incorporate additional data sources: Integrate data from external sources like code
repositories, bug tracking systems, and communication platforms for a more holistic
understanding of project dynamics.

Investigate explainable Al (XAI) techniques: Enhance transparency and trust in the
framework by providing insights into how machine learning models arrive at their
predictions.

Product Development:

Develop mobile applications: Provide on-the-go access to key project metrics, visualizations,
and re-estimation features for increased user convenience.

Expand reporting capabilities: Offer customizable reports with user-defined filters and drill-
down capabilities for deeper analysis of project performance.

Integrate with workflow management tools: Allow seamless integration with existing
workflow tools to streamline project management tasks further.

Market Expansion:

Develop industry-specific versions: Tailor the framework to address specific needs and
challenges faced in different industries (e.g., healthcare, finance, manufacturing).

Explore international expansion: Translate the framework and marketing materials into
different languages to reach a wider global audience.

Establish partnerships with industry leaders: Collaborate with relevant organizations and
influencers to promote the framework and gain broader recognition within the software
development community.

Further Research:

Conduct user research: Continuously gather feedback from users to understand their evolving
needs and pain points, informing future development decisions.

Evaluate the impact on decision-making: Analyze how the framework influences user
behavior and decision-making processes within project teams, assessing its overall
effectiveness.

Explore ethical considerations: Research and address potential ethical concerns surrounding
the use of machine learning in project management, promoting responsible and fair
application of the framework.
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7. PROJECT REQUIREMENTS

7.1.Functional Requirements

1. Data Management:

Data Acquisition:

Ability to connect to various project management tools, repositories, and databases.
Ability to import data in various formats (e.g., CSV, JSON, Excel).

Secure user authentication and authorization for data access.

Data Processing:

Data cleaning and preprocessing functionalities to handle missing values, outliers, and
inconsistencies.

Feature engineering capabilities to transform raw data into features suitable for machine
learning algorithms.

Data versioning and audit trails to track changes and ensure data integrity.
2. Machine Learning Models:
Defect Prediction Model:

Ability to train and deploy different machine learning models (e.g., regression, ensemble
methods) for predicting potential defects based on historical data and project attributes.

Provide confidence scores for predictions, indicating the level of certainty associated with the
estimated defect count.

Risk Analysis Model:

Ability to model and assess the likelihood and impact of potential project risks (e.g., schedule
delays, budget overruns, resource shortages).

Offer visualization tools (e.g., heatmaps, charts) to present risk information clearly.
Allow users to define custom risk categories and weigh the impact of different risk factors.
Re-estimation Model:

Ability to continuously update and refine effort and timeline estimates based on historical
data, new information, and model predictions.

Integrate with user input to capture project progress updates and adjust estimations
accordingly.

Track trends and provide explanations for significant changes in estimated timelines.
3. User Interface (UI):

Intuitive interface: Easy-to-use interface for users with varying levels of technical expertise.
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Data visualization: Provide clear and informative visualizations of project metrics,
predictions, and trends using charts, graphs, and dashboards.

Interactive features: Allow users to filter data, adjust model parameters, and explore different
scenarios through simulations.

Customization options: Users should be able to customize reports and visualizations based on
their specific needs and preferences.

4. Reporting and Export:

Generate comprehensive reports summarizing project metrics, identified risks, and re-
estimation trends.

Allow users to export data and reports in various formats (e.g., PDF, CSV) for external use or
analysis.

5. Integration:
Seamless integration with existing project management tools and platforms.

Ability to import and export data using standardized APIs for easier integration and data
exchange.

6. Security and Privacy:

Implement robust security measures to protect sensitive project data, including user
authentication, access control, and data encryption.

Comply with relevant data privacy regulations to ensure user data is handled responsibly and
ethically.

7. System Administration:

User management capabilities for creating, editing, and deleting user accounts with
appropriate access levels.

System monitoring and logging features to track system performance, identify potential
issues, and troubleshoot problems.

8. Additional Requirements:

Version control for code and models to manage different versions and facilitate rollbacks
when necessary.

Documentation and tutorials to guide users on onboarding, using the system effectively, and
interpreting the outputs.

Multilingual support for broader international reach and user accessibility
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7.2. Non-Functional Requirements

1. Performance and scalability:

Response Time: The framework should have quick response times for data processing, model
training, and generating predictions to ensure user satisfaction and avoid delays in project
management tasks.

Scalability: The framework should be able to handle increasing amounts of data and users
without significant performance degradation, allowing it to grow with the needs of the
organization.

2. Usability and Accessibility:

Ease of Use: The framework should have a user-friendly interface that is intuitive and easy to
learn for users with varying levels of technical expertise.

Accessibility: The framework should be accessible to users with disabilities, adhering to
relevant accessibility standards and guidelines.

3. Reliability and Availability:

High Availability: The framework should be available for use with minimal downtime to
ensure project teams can access critical information and functionalities seamlessly.

Data Consistency: The framework should consistently produce accurate and reliable results,
ensuring users can trust the information provided for decision-making.

4. Security and Privacy:

Data Security: The framework should implement robust security measures to protect sensitive
project data from unauthorized access, modification, or loss.

User Privacy: The framework should comply with relevant data privacy regulations to ensure
user information is handled responsibly and ethically.

5. Maintainability and Supportability:

Modular Design: The framework should have a modular architecture that allows for easy
maintenance, updates, and future feature additions.

Documentation: Comprehensive documentation should be available to guide users on
operating and troubleshooting the framework effectively.

Technical Support: A reliable and efficient technical support system should be established to
address user queries and resolve issues promptly.

6. Interoperability and Integration:

Interoperability: The framework should be able to work seamlessly with other project
management tools and platforms through standardized APIs or data connectors.

Integration Flexibility: The framework should offer various integration options, allowing
organizations to choose the approach that best suits their existing infrastructure and
workflows.
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7. User Training and Adoption:

Training Materials: Provide comprehensive training materials (e.g., tutorials, user guides,
videos) to help users understand the framework's functionalities and utilize them effectively.

User Adoption Strategies: Develop strategies to promote user adoption within organizations,
such as workshops, demonstration sessions, and user feedback mechanisms.

&. Internationalization:

Localization: Consider offering the framework in various languages to reach a wider global
audience, expanding its reach and potential user base in the future.

Cultural Sensitivity: Design the framework with cultural sensitivity in mind, avoiding biases
or assumptions that might hinder user adoption in different regions.
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8.1.Work Breakdown Structure (WBS)
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9. BUDGET & BUDGET JUSTIFICATION

Unit Cost Total Cost
Cloud Price . 6000 18,000
Dewelopers' value *4 50,000 200,000
Database Price 5000 5000
AWS 7000 7000
Marketing and Advertisements 10,000 10,000
Total Value 240,000
Figure 5 Budget
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10. CONCLUSION

This project focused on creating an integrated framework designed to significantly improve
the way software projects are managed. Our goal was to utilize the power of machine
learning and data analytics to increase project accuracy, minimize risks, and optimize overall
efficiency throughout the software development lifecycle.

At its core, the proposed framework aims to achieve three primary objectives. First, to
enhance project accuracy by using machine learning to accurately predict potential defects,
estimate effort, and forecast project timelines. Second, to reduce risks associated with
projects by quantifying them and allowing for proactive mitigation, enabling more realistic
expectations. Third, to boost efficiency by supporting adaptive resource allocation and
providing data-driven insights for continuous re-estimation of timelines.

We established a well-defined plan outlining a multi-phase development process. This
included data collection, building machine learning models, and designing a user-friendly
interface. The framework underwent rigorous testing in a controlled environment and was
evaluated for accuracy. We incorporated user feedback to improve the framework and ensure
it meets actual user needs.

We crafted a robust commercialization and business plan, outlining the framework's unique
value proposition, defining the ideal target market, and strategizing revenue sources. We
explored possible go-to-market approaches, analyzed the competitive landscape, and drafted
financial projections, including both costs and potential revenues, to determine the
framework's long-term viability. Additionally, we considered future steps with a focus on
continuous technological advancements, product expansion, and market growth strategies.

We carefully established both functional and non-functional requirements for the framework.
Functional requirements focused on the specific tasks the framework should perform, while
non-functional requirements dealt with aspects like performance, user experience, security,
and scalability. A comprehensive budget was created, outlining major costs associated with
personnel, technology, data, marketing, and legal & administrative needs. This budget
highlights the investment needed to bring the framework to market and the potential for a
positive return on investment.

This project provides a solid foundation for a potentially revolutionary software project
management solution. While further work is necessary, this integrated framework has the
ability to streamline projects, improve decision-making, and ultimately aid software teams in
delivering projects with greater accuracy, efficiency, and success.
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